平凉火车站在哪:最小二乘估计是什么

来源:百度文库 编辑:查人人中国名人网 时间:2024/04/27 13:49:30

一,什么是最小二乘估计least-square estimation
例: y = ax + (
其中:y,x 可测;( — 不可测的干扰项;
a —未知参数.通过 N 次实验,得到测量数据 yk 和
xk k = 1,2,3 …,确定未知参数 a 称"参数估计". 使准则 J 为最小 :
令:( J ( ( a = 0 , 导出 a =
称为"最小二乘估计",即残差平方总和为最小的估计,Gauss于 1792晏岢?
二,多元线性回归
线性模型 y = a0+ a1x1+(+ anx n + ( 式(2 - 1- 1)
引入参数向量: ( = [ a0,a1, (a n ]T (n+1)(1
进行 N 次试验,得出N 个方程:
yk = (kT ( + (k ; k=1,2…,N 式(2 -1- 2)
其中:(k = [ 1,x1,x2,(,x N ] T (n+1) (1
方程组可用矩阵表示为
y = ( ( + ( 式(2 -1- 3)
其中:y = [ y1,y2, ...,y N ] T (N (1)
( = [ (1, (2, ...,( N ] T (N 1)

N (n+1)
估计准则:
有:
= (y — ( ()T( y — ( ()
(1(N) ( N(1)
J = yTy + (T (T ( ( -yT ( ( - (T (T y
= yTy + (T (T ( ( - 2 (T (T y 式(2 -1- 4)
假设:((T ()(n+1)(n+1) 满秩,由
利用线性代数的以下两个矩阵对向量求偏导数的公式:

有: 和
所以:
解出参数估计向量: ( Ls =((T ()-1 (T y 式(2 -1- 5)
令:P = ((T ()-1 则参数估计向量 ( Ls = P (T y
参数估计向量 ( Ls 被视为以下"正则方程"的解:
((T ()( = (T y 式(2 -1- 6)
注:为了便于区别, 我们用红体字符表示估计量或计算值,而用黑体表示为参数真值或实际测量值.
三,关于参数最小二乘估计 Ls 性质的讨论
以上求解参数最小二乘估计 ( Ls 时并为对{ (k }的统计特性做任何规定,这是最小二乘估计的优点.当{ (k }为平稳零均值白噪声时,则 ( Ls 有如下良好的估计性质:
参数最小二乘估计 ( Ls 是 y 的 线性估计
( Ls = P (T y 是 y 的线性表出;
b) 参数最小二乘估计 ( Ls 是无偏估计,即 E ( Ls= ( (参数真值)
[ 证明 ]:E ( Ls= E[ P (T y ]= P (T E( y ) = P (T E ( (( + ( ) =
P (T ( ( + E( ( ) = ( + 0 = (
最小二乘估计 ( Ls 的估计误差协方差阵是 (2P (n+1)(n+1)
即:E [ ( ( Ls- ( ) ( ( Ls- ( )T ] = (2P
[ 证明 ]:E [ ( ( Ls - ( ) ( ( Ls - ( )T ] = E [ P (T ( y -
( () ( y- ( ()T (P ] = E [ P (T ( (T (P ] = P (T E ( ( (T) (P =
P (T (2 IN(N (P = (2P
若{ (k }为正态分布零均值白噪声时,则 ( Ls 是线性无偏最小方差估计(证明从略).如若{ (k }是有色噪声,则 ( Ls 不具有上述性质,即为有偏估计.
四,最小二乘估计 ( Ls 的的几何意义和计算问题
1.最小二乘估计的几何意义
最小二乘估计的模型输出值为 yk = ( kT ( Ls k = 1,2,…N
输出实际测量值与模型输出值之差叫残差: (k = yk – yk
模型输出向量为 y = ( ( Ls ,而残差向量为:
( = y – y = y – ( ( Ls
(T ( k = (T y – (T (((T ()-1 (T y = (T y – (T y = 0
即残差向量 ( 与由测量数据矩阵 ( 的各个向量:( 1, ( 2 ,…, ( N 张成的超平面(估计空间)正交,而最小二乘模型输出向量 y 为实际输出向量 y 在估计空间上的正交投影,这就是最小二乘估计的几何意义.

---------------------------------------------

最小二乘法是一种数学优化技术,它通过最小化误差的平方和找到一组数据的最佳函数匹配。
最小二乘法是用最简的方法求得一些绝对不可知的真值,而令误差平方之和为最小。
最小二乘法通常用于曲线拟合。很多其他的优化问题也可通过最小化能量或最大化熵用最小二乘形式表达。

比如从最简单的一次函数y=kx+b讲起
已知坐标轴上有些点(1.1,2.0),(2.1,3.2),(3,4.0),(4,6),(5.1,6.0),求经过这些点的图象的一次函数关系式.
当然这条直线不可能经过每一个点,我们只要做到5个点到这条直线的距离的平方和最小即可,这就需要用到最小二乘法的思想.然后就用线性拟合来求.

我也为过一样的问题,呵呵..
最小二乘法的用途很广的,我把别人给我的答案拷贝给你,其中有错误的,劝楼主还是自己找原文看看,
最小二乘法

在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2... xm , ym);将这些数据描绘在x -y直角座标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。

Y计= a0 + a1 X (式1-1)

其中:a0、a1 是任意实数

为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”。

令: φ = ∑(Yi - Y计)2 (式1-2)

把(式1-1)代入(式1-2)中得:

φ = ∑(Yi - a0 - a1 Xi)2 (式1-3)

当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。

(式1-4)

(式1-5)

亦即:

m a0 + (∑Xi ) a1 = ∑Yi (式1-6)

(∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7)

得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:

a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8)

a1 = [∑Xi Yi - (∑Xi ∑Yi)/ m] / [∑Xi2 - (∑Xi)2 / m)] (式1-9)

这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。

在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。

R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *

在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。微积分应用课题一 最小二乘法

从前面的学习中, 我们知道最小二乘法可以用来处理一组数据, 可以从一组测定的数据中寻求变量之间的依赖关系, 这种函数关系称为经验公式. 本课题将介绍最小二乘法的精确定义及如何寻求 与 之间近似成线性关系时的经验公式. 假定实验测得变量之间的 个数据 , , …, , 则在 平面上, 可以得到 个点 , 这种图形称为“散点图”, 从图中可以粗略看出这些点大致散落在某直线近旁, 我们认为 与 之间近似为一线性函数, 下面介绍求解步骤.

考虑函数 , 其中 和 是待定常数. 如果 在一直线上, 可以认为变量之间的关系为 . 但一般说来, 这些点不可能在同一直线上. 记 , 它反映了用直线 来描述 , 时, 计算值 与实际值 产生的偏差. 当然要求偏差越小越好, 但由于 可正可负, 因此不能认为总偏差 时, 函数 就很好地反映了变量之间的关系, 因为此时每个偏差的绝对值可能很大. 为了改进这一缺陷, 就考虑用 来代替 . 但是由于绝对值不易作解析运算, 因此, 进一步用 来度量总偏差. 因偏差的平方和最小可以保证每个偏差都不会很大. 于是问题归结为确定 中的常数 和 , 使 为最小. 用这种方法确定系数 , 的方法称为最小二乘法.

由极值原理得 , 即

解此联立方程得

(*)

问题 I 为研究某一化学反应过程中, 温度 ℃)对产品得率 (%)的影响, 测得数据如下:

温度 ℃)
100 110 120 130 140 150 160 170 180 190

得率 (%)
45 51 54 61 66 70 74 78 85 89

(1) 利用“ListPlot”函数, 绘出数据 的散点图(采用格式: ListPlot[{ , , …, }, Prolog->AbsolutePointSize[3]] );

(2) 利用“Line”函数, 将散点连接起来, 注意观察有何特征? (采用格式: Show[Graphics[Line[{ , , …, }]] , Axes->True ]) ;

(3) 根据公式(*), 利用“Apply”函数及集合的有关运算编写一个小的程序, 求经验公式 ;

(程序编写思路为: 任意给定两个集合A (此处表示温度)、B(此处表示得率), 由公式(*)可定义两个二元函数(集合A和B为其变量)分别表示 和 . 集合A元素求和: Apply[Plus,A] 表示将加法施加到集合A上, 即各元素相加, 例如Apply[Plus,{1,2,3}]=6;Length[A]表示集合A 元素的个数, 即为n; A.B表示两集合元素相乘相加;A*B表示集合A与B元素对应相乘得到的新的集合.)

(4) 在同一张图中显示直线 及散点图;

(5) 估计温度为200时产品得率.

然而, 不少实际问题的观测数据 , , …, 的散点图明显地不能用线性关系来描叙, 但确实散落在某一曲线近旁, 这时可以根据散点图的轮廓和实际经验, 选一条曲线来近似表达 与 的相互关系.

问题 II 下表是美国旧轿车价格的调查资料, 今以 表示轿车的使用年数, (美元)表示相应的平均价格, 求 与 之间的关系.

使用年数
1 2 3 4 5 6 7 8 9 10

平均价格
2651 1943 1494 1087 765 538 484 290 226 204

(1) 利用“ListPlot”函数绘出数据 的散点图, 注意观察有何特征?

(2) 令 , 绘出数据 的散点图, 注意观察有何特征?

(3) 利用“Line”函数, 将散点 连接起来, 说明有何特征?

(4) 利用最小二乘法, 求 与 之间的关系;

(5) 求 与 之间的关系;

(6) 在同一张图中显示散点图 及 关于 的图形.

思考与练习

1. 假设一组数据 : , , …, 变量之间近似成线性关系, 试利用集合的有关运算, 编写一简单程序: 对于任意给定的数据集合 , 通过求解极值原理所包含的方程组, 不需要给出 、 计算的表达式, 立即得到 、 的值, 并就本课题 I /(3)进行实验.

注: 利用Transpose函数可以得到数据A的第一个分量的集合, 命令格式为:

先求A的转置, 然后取第一行元素, 即为数据A的第一个分量集合, 例如

(A即为矩阵 )

= (数据A的第一个分量集合)

= (数据A的第二个分量集合)

B-C表示集合B与C对应元素相减所得的集合, 如 = .

2. 最小二乘法在数学上称为曲线拟合, 请使用拟合函数“Fit”重新计算 与 的值, 并与先前的结果作一比较.

注: Fit函数使用格式:

设变量为x, 对数据A进行线性拟合, 如对题1中的A拟合函数为:

=

数理统计中的数据分析方法,建议阅读有关数据,或者搜索,关键词:最小二乘法

no