手机怎么测网速:斯蒂芬霍金的资料

来源:百度文库 编辑:查人人中国名人网 时间:2024/04/29 19:08:25
请问大家有没有斯蒂芬霍金的资料。要英文的。简单的资料就行。。谢谢了。。要英文的

Stephen Hawking
Stephen Hawking is one of the famous scientists in this century. He is now wheelchair bound and unable to feed himself or get in and out of bed alone. But he has refused to give in to the condition. Now he is regarded as one of the world's leading authorities on cosmology. Last year he was invited to China. He impressed us with his self-confident, humorous and witty conversations.

Stephen Huo Jin was born in 1942 , got the physics doctorate , did research work in British Cambridge University. Have already while getting 21 years old ago perceived, He unavoidably fell down once getting about. Though she suffers from the serious encephalopathic day by day, he decide that continues being engaged in the research and writing. Speaking , read and writing that oneself can even if will have fingers of a hand that can move about in the future that he must find the method to make. That " time biref history " of his became the best seller in 1988.
斯蒂芬·霍金1942年出生,获得过物理学博士学位,在英国剑桥大学作过研究工作。到21岁的时候就已经察觉到,他一走动就难免摔倒。虽然她患有日趋严重的脑病,但是他决定继续从事研究和写作。他必须找到办法使自己即使今后有一只手的手指能够活动也能讲话、阅读和写作。他的那本《时间简史》在1988年成了畅销书。

Stephen William Hawking was born on 8 January 1942 (300 years after the death of Galileo) in Oxford, England. His parents' house was in north London, but during the second world war Oxford was considered a safer place to have babies. When he was eight, his family moved to St Albans, a town about 20 miles north of London. At eleven Stephen went to St Albans School, and then on to University College, Oxford, his father's old college. Stephen wanted to do Mathematics, although his father would have preferred medicine. Mathematics was not available at University College, so he did Physics instead. After three years and not very much work he was awarded a first class honours degree in Natural Science.

Stephen then went on to Cambridge to do research in Cosmology, there being no-one working in that area in Oxford at the time. His supervisor was Denis Sciama, although he had hoped to get Fred Hoyle who was working in Cambridge. After gaining his Ph.D. he became first a Research Fellow, and later on a Professorial Fellow at Gonville and Caius College. After leaving the Institute of Astronomy in 1973 Stephen came to the Department of Applied Mathematics and Theoretical Physics, and since 1979 has held the post of Lucasian Professor of Mathematics. The chair was founded in 1663 with money left in the will of the Reverend Henry Lucas, who had been the Member of Parliament for the University. It was first held by Isaac Barrow, and then in 1663 by Isaac Newton.

Stephen Hawking has worked on the basic laws which govern the universe. With Roger Penrose he showed that Einstein's General Theory of Relativity implied space and time would have a beginning in the Big Bang and an end in black holes. These results indicated it was necessary to unify General Relativity with Quantum Theory, the other great Scientific development of the first half of the 20th Century. One consequence of such a unification that he discovered was that black holes should not be completely black, but should emit radiation and eventually evaporate and disappear. Another conjecture is that the universe has no edge or boundary in imaginary time. This would imply that the way the universe began was completely determined by the laws of science.

His many publications include The Large Scale Structure of Spacetime with G F R Ellis, General Relativity: An Einstein Centenary Survey, with W Israel, and 300 Years of Gravity, with W Israel. Stephen Hawking has two popular books published; his best seller A Brief History of Time, and his later book, Black Holes and Baby Universes and Other Essays.

Professor Hawking has twelve honorary degrees, was awarded the CBE in 1982, and was made a Companion of Honour in 1989. He is the recipient of many awards, medals and prizes and is a Fellow of The Royal Society and a Member of the US National Academy of Sciences.

Stephen Hawking continues to combine family life (he has three children and one grandchild), and his research into theoretical physics together with an extensive programme of travel and public lectures.

Hawking, Stephen William (1942- ), British theoretical physicist and mathematician whose main field of research has been the nature of space and time, including irregularities in space and time known as singularities. Hawking has also devoted much of his life to making his theories accessible to the public through lectures, books, and films.

Hawking was born in Oxford, England, and he showed exceptional talent in mathematics and physics from an early age. He entered Oxford University in 1958 and became especially interested in thermodynamics (the study of the interaction of matter and energy), relativity theory, and quantum mechanics (see Quantum Theory). In 1961 he attended a summer course at the Royal Observatory that encouraged these interests. He completed his undergraduate courses in 1962 and received a bachelor’s degree in physics. Hawking then enrolled as a research student in general relativity at the department of applied mathematics and theoretical physics at the University of Cambridge.

Hawking earned his Ph.D. degree from Trinity College at the University of Cambridge in 1966. He stayed at the University of Cambridge, doing post-doctoral research, until he became a professor of physics in 1977. He became one of the youngest fellows of the Royal Society in 1974. In 1979 he was appointed Lucasian Professor of Mathematics at Cambridge.

During his postgraduate program, Hawking was diagnosed as having Amyotrophic Lateral Sclerosis (ALS), a rare progressive disease that handicaps movement and speech. This disease makes it necessary for Hawking to carry out the long and complex mathematical calculations that his work requires in his head. He has been able to continue his studies and to embark upon a distinguished and productive scientific career despite his illness.

From its earliest stages, Hawking’s research has been concerned with the concept of singularities—breakdowns in space and time where the classic laws of physics no longer apply. The combination of time and three-dimensional space is called space-time. The most familiar example of a singularity is a black hole, the final form of a collapsed star. Much of what scientists believe about space-time comes from the theory of relativity, which was developed in the early 20th century by German American physicist Albert Einstein. During the late 1960s Hawking proved that if the general theory of relativity is correct, then a singularity must also have occurred at the big bang. The big bang is the explosion that marked the beginning of the universe and the birth of space-time itself.

In 1970 Hawking’s research turned to the examination of the properties of black holes. The boundary of a black hole is called the event horizon. Hawking realized that the surface area of the event horizon around a black hole could only increase or remain constant with time—this area could never decrease. This meant, for example, that if two black holes merge, the surface area of the new black hole would be larger than the sum of the surface areas of the two original black holes. He also noticed that there were certain parallels between the laws of thermodynamics and the properties of black holes. For instance, the second law of thermodynamics states that entropy, or disorder, must increase with time. The surface area of the event horizon of a black hole is therefore similar to the entropy of a thermodynamic system.

From 1970 to 1974, Hawking and his associates provided mathematical proof for the hypothesis formulated by American physicist John Wheeler known as the “No Hair Theorem.” This theorem states that the only properties that particles of matter keep once they enter a black hole are mass, angular momentum (or spin), and electric charge. Matter entering a black hole loses its shape, its chemical composition, and its distinction as matter or antimatter.

Since 1974 Hawking has studied the behavior of matter in the immediate vicinity of a black hole from a theoretical basis in quantum mechanics. Quantum mechanics is a theory that describes how subatomic particles behave and how matter and radiation interact. He found, to his initial surprise, that black holes—from which nothing was supposed to be able to escape—could emit thermal radiation, or heat. Several explanations for this phenomenon were proposed, including one involving the creation of virtual particles. A virtual particle differs from a real particle in that a virtual particle cannot be seen by means of a particle detector, but it can be observed through its indirect effects. Empty space is full of virtual particles fleetingly “created” out of nothing, forming a particle and antiparticle pair that immediately destroy each other. (This concept is a violation of the principle of conservation of mass and energy, which says that the combined amount of mass and energy in a system must stay the same. The concept is permitted—and predicted—by the uncertainty principle of German physicist Werner Heisenberg, which states that it is impossible to measure both the position and energy of a particle precisely. Hawking proposed that when a particle pair is created near a black hole, one half of the pair might disappear into the black hole, leaving the other half to radiate away from the black hole. To a distant observer, the radiation of the leftover particle would appear as thermal radiation.

Throughout the 1990s Hawking sought to produce a theory that could connect several theories used by scientists to explain the universe. This theory would combine quantum mechanics and relativity to form a quantum theory of gravity (see Unified Field Theory). Such a unified physical theory would incorporate all four basic types of interactions between matter and energy: strong nuclear interactions, weak nuclear interactions, electromagnetic interactions, and gravitational interactions.

The properties of space-time, the beginning of the universe, and a unified theory of physics are all fundamental research areas of science. Hawking has made, and continues to make, major contributions to the modern understanding of all these areas. He has also made his work accessible to the public through several books, including A Brief History of Time (1988) and Black Holes and Baby Universes and Other Essays (1993), which are suitable for a general audience. In 1992 American filmmaker Errol Morris helped make A Brief History of Time into a film about Hawking’s life and work.

哈,谢谢楼上的,我也在找这资料呢~

The aroma of Stephen Huo Gold is one of the great man that this century possesses an international great reputation, 60 years old, was born to pass away anniversary in the galileo for day, the applied mathematics of the Cambridge university and the theories physical department taught, contemporary the most important the general theory of Relativity and the cosmology house.In 70's he with the Stephen Huo proved the strange sex axioms of together, for this they acquired a fertile 尔 man physical prize of 1988 together.He is therefore praised for after Einstein in the world most the science thinker and the most outstanding theories physicist".He still proved the area axioms of black hole.The is usually golden is be rich with very much legend, achieve in science up, he is to have a history one of the most outstanding scientists.The job that he holds the post of is a Cambridge university to has a history the most lofty professor's job, that is 卢 card lousy mathematics that Newton pulled a gram to once hold the post of to teach.He owns a few honorary degrees, is a Royal to master a member.He because of suffering from the thunder surname disease(the muscle atrophy sex side cirrhosis), the durance reaches to on a wheel chair for long 20 years, he but body remnants the ambition isn't cripple, making it change into advantage, overcame physically disabled of suffer from but become the super Nova of international physical boundary.He can't write, even enunciation not clear, but he surmounts theory of relativity, quantum mechanics and explode greatly etc. theories but exceed into creation cosmos of"several it dance".Though he sits so and helplessly on the wheel chair, his thought roam about at pleasure the timespace of light outstandingly, untying the riddle of cosmos.
斯蒂芬.霍金,是本世纪享有国际盛誉的伟人之一,现年60岁,出生于伽利略逝世周年纪念日,剑桥大学应用数学及理论物理学系教授,当代最重要的广义相对论和宇宙论家。70年代他与彭罗斯一道证明了著名的奇性定理,为此他们共同获得了1988年的沃尔夫物理奖。他因此被誉为继爱因斯坦之后世界上最著名的科学思想家和最杰出的理论物理学家”。他还证明了黑洞的面积定理。霍金的生平是非常富有传奇性的,在科学成就上,他是有史以来最杰出的科学家之一。他担任的职务是剑桥大学有史以来最为崇高的教授职务,那是牛顿和狄拉克担任过的卢卡逊数学教授。他拥有几个荣誉学位,是皇家学会会员。他因患卢伽雷氏症(肌萎缩性侧索硬化症),禁锢在一张轮椅上达20年之久,他却身残志不残,使之化为优势,克服了残废之患而成为国际物理界的超新星。他不能写,甚至口齿不清,但他超越了相对论、量子力学、大爆炸等理论而迈入创造宇宙的“几何之舞”。尽管他那么无助地坐在轮椅上,他的思想却出色地遨游到光袤的时空,解开了宇宙之谜。