乐天网上免税店怎么买:真空状态下任何生物都不能生存吗

来源:百度文库 编辑:查人人中国名人网 时间:2024/04/30 18:04:17
真空状态下任何生物都不能生存吗? 真空状态下没有氧气,那厌氧菌能生存吗?

生物生存并不仅仅是有氧气就可以的,还要有温度,压强,湿度等等因素决定.真空中是超底压,生物细胞的各项生命指标都会发生变化,真空中生物不能生存.

当然了,因为压强的缘故,真空中的生物将会体腔膨胀裂开而亡
所以才有真空灭菌处理啊~~而那还算不上真空呢,只是接近

绝对不能,生物的生存需要从环境中获取自身所必须的物质和能量。真空无法提供这些物质。

似乎不行

早在1868年,天文学家威廉·惠更斯就发现彗星光谱和天然气光谱的某些特征是一样的。惠更斯发现彗星上有有机物;几年之内又发现彗星里含有氰(即硝酸纤维素,含有一个碳原子和一个氮原子,是形成氰化物的分子碎片)。1910年,当地球即将穿过哈雷彗星的尾巴时,许多人非常恐慌,他们忽略了“彗尾富有扩散性”的事实。彗星的毒性所带来的危险远不如(即使在1910年)大城市工业污染所带来的危险。

但是几乎没有人感到放心。例如,旧金山1910年5月15日《纪事报》的大标题中有:“跟房子一样大的彗星摄像机”、“彗星来临,丈夫自新”、“彗星晚会在纽约流行”。洛杉矾《考察家报》的气氛比较轻松:“喂!那个彗星毒死你了吗?……全人类该免费洗一洗气体浴了”、“期待‘狂欢作乐’”、“许多人嗅到氰的强烈味道”、“受害者爬树,给彗星挂电话。”1910年,人们举行了许多晚会,他们要在世界遭到气污染的末日来临之前尽情欢乐一番。企业家到处兜售抗彗药和防毒面具(后者令人恐怖地预示了第一次世界大战的战场)。

即使在我们的时代,对彗星仍然存在着模糊的认识。1957年,我是芝加哥大学叶凯士天文台的研究生。有一天深夜,我独自一个人在天文台里,听到电话铃直响。我接电话时,听到一个人用醉醺醺的声音说:“请让我跟天文学家讲几句话。”“你有什么事就说吧。”“是这样的,我们正在威尔米特举行花园晚会,天上有个东西,奇怪的是,你正视它的时候,它就不在了,但是如果你不看它,它又在那里。”视网膜最敏感的部分不在视界的中心,如果你将视线稍微偏移一点,你就可以看到暗淡的星星和其他的物体。我知道当时天上勉强可见的东西是一个新发现的叫做“阿伦罗兰”的彗星,所以我就告诉他,说他看见的可能是一个彗星。他停顿了好一会儿才问:“什么叫彗星?”“彗星就是直径1英里的雪球。”我回答说。这次,这个打电话的人停顿的时间更长。后来,他请求说:“请找个真正的天文学家跟我谈吧。”1986年哈雷彗星再现时,我不知道什么样的政界领导人会对此感到恐惧,我们不知道我们到时候还会干出别的什么蠢事来。

虽然行星是在椭圆形的轨道上绕太阳运转,其实它们的轨道的椭率并不很大。乍看起来,它们的轨道倒像是圆形的。彗星——特别是周期长的彗星——才有显著的椭圆形轨道。行星是内太阳系的老前辈,彗星则是新客。为什么行星的轨道基本上是圆形的而且整齐地分隔开来?因为如果行星轨道的椭率很大的话,它们就会交叉在一起,那么行星迟早会相撞。在太阳系的早期历史里,可能有许多行星正处在形成的过程中,那些在椭圆交叉轨道上的行星很容易相互碰撞而毁灭,而在圆形轨道上的行星则容易成长而生存下来。现在这些行星的轨道是在这种碰撞自然选择中幸存者的轨道,我们的太阳系已经由充满灾难性的撞击的少年进人稳定的中年。

在太阳系的最外层,在行星以远的黑暗空间里,有一个由1万亿个彗核构成的巨大的球云,它绕太阳运转的速度不会比印第安纳波利斯首届500英里车赛的速度更快①。一个典型的彗星看上去像一个直径约1公里的巨大的滚动的雪球。大多数彗星从来没有穿越过冥王星轨道这条边界,但是,偶而会有一颗行星从它们旁边经过,打乱它们的引力关系,使一群彗星进入椭率很大的轨道,向太阳猛冲。当它们的轨道由于木星和土星的引力作用而继续变化时,它们就(大约每100年左右一次)往内太阳系猛冲。在木星和火星轨道之间的某个地方,它们开始发热和蒸发。从太阳的大气层吹出来的物质——太阳风,将尘埃和冰块推向彗星的背部,使它们有了短尾。假如木星的直径是1米的话,我们的彗星就会比尘埃颗粒还要小。但是如果它们发展壮大的话,它们的尾巴会有从一个星球到另一个星球那么长。当它们接近地球的时候,它们会在地球上的人类当中激起迷信的狂热。但是人类最终会懂得,彗星不是生在在他们的大气层里,而是生存在大气层外的行星之间。人类将会计算彗星的轨迹,也许在不久的将来,人类还会发射一个小宇宙飞船,专门用来探测这个来自恒星王国的客人②。

彗星迟早是要跟行星碰撞的。地球及其伙伴月亮势必受到彗星和小行星——太阳系在形成过程中残余下来的碎片——的轰炸。既然小的物体比大的物体多,受小物体撞击的可能性也就比受大物体撞击的可能性大。彗星碎片撞击地球的事件(例如通古斯事件),每1千年就可能发生一次左右,但是大彗星(例如哈雷彗星,它的核可能有20公里的直径)撞击地球的事件只可能每10亿年左右发生一次。

当一个小的冰冻物体跟一个行星或一个卫星碰撞时,行星或卫星上还不会有很大的伤痕,但是如果撞击物比较大或撞击物主要是由岩石构成的,那么撞击的时候就会引起爆炸,形成一个半球形的坑,我们把它叫做撞击环形山。如果环形山没有被破坏掉或被填满,它可能几十亿年之后都还会存在。月球上几乎没有侵蚀现象,当我们考察月球的表面时,我们发现它布满了环形山,这些环形山的数量远不是现在太阳系内寥寥无几的彗星碎片和小行星碎片所能解释的,月球的表面雄辩地证明宇宙曾经经历过毁灭性的年代,那是几十亿年前的事了。

撞击环形山并不只是月球上才有的,我们在整个内太阳系都会发现它们——从最靠近太阳的水星,到云雾迷漫的金星,到火星及其小卫星(火卫一和火卫二)。这些行星叫类地行星,在宇宙中跟我们是一家人,它们的性质可以拿地球作代表。它们的表层是固体,内部主要是岩石和铁。大气层的气压不尽相同,从几乎是真空状态到比地球的气压高叨倍都有。它们像野营者围着营火一样紧紧地围着太阳——光源和热源。所有的行星大约都有46亿年的历史了,跟月球一样,它们都是太阳早期历史的撞击灾变岁月的见证人。

越过火星之后,我们就来到了一个非常不同的“社会制度”里——木星和其他大行星(即类木行星)的王国。这些行星都是大行星,它们的主要成分是氢和氦,还有少量的富氢气体(例如甲烷、氨气)和水。在这里,我们看不到坚实的表面,看到的只是大气和五彩缤纷的云层。这些行星都是举足轻重的,而不像地球那样是微不足道的。木星可以装得下1000个地球。假如彗星或小行星落到木星的大气层里的话,我们不可能看到环形山,我们只能看到云层暂时断裂的现象。然而,我们知道,外太阳系的碰撞史也已经有几十亿年了,因为木星的体系更庞大,有十几个卫星,“旅行者”宇宙飞船曾经对其中的5个卫星进行过详细的考察。在这里,我们也找到了过去灾变的证据。整个太阳系都探索过之后,我们可能就会找到所有9个星球(从水星到冥王星)和所有小卫星、彗星和小行星都经历过撞击灾变的证据。

月球正面大约有1万个环形山,在地球上用望远镜可以看得见。大多数环形山是在月球的古代高地上,从月球的行星际碎片最后吸积时期起就有了。在maria(拉丁语“海”)里约有1000个直径超过1公里的环形山。所谓的“海”,是指月球的平原地区,在月球形成后不久,这里可能是个熔岩涌流的地方,先前的环形山都被遮没了。因此,粗略地计算,现在月球上环形山的形成率应该是:109年/104环形山=105年/环形山,即每10万年形成一个环形山。因为行星际碎片在几十亿年前可能比现在多,所以我们可能要等10万年以上才能看到在月球上形成一个环形山。因为地球的面积比月球大,所以我们可能要等大约1万年才能看到我们的行星被撞击出一个1公里宽的环形山。据研究,亚利桑那的陨星坑(大约1公里宽的撞击环形山)已经有2万到3万年的历史了,因此,地球上的观测与上述的估算是一致的。

彗星或小行星与月球的实际撞击可能会引起瞬息爆炸,我们从地球上可以看到爆炸所发出的光。我们可以想象,在10万年前的某一个晚上,当我们的祖先悠闲地举目望着天空的时候,突然看到一股奇特的白烟从月球的背光部分升起来,并且被太阳光把它照亮了。但是,我们并不认为历史上可能发生过这种事情,因为发生这种事情的可能性是很小的。然而,在地球上用肉眼看到的月球遭受撞击的事实是有案可查的。1178年6月25日夜晚,5个英国修道士报告了一件奇怪的事情,后来这件事情被坎特伯雷的杰维斯收录在他的编年史里。人们普遍认为,该书所记述的关于杰维斯时代的政治和文化事件是可靠的。作者收录这个事件之前曾经采访过目击者,他们都发誓说他们所看到的是事实。杰维斯的编年史里有这么一段话:

一弯明亮的新月,月相如旧,钩尖朝东。忽然间,上钩一分为二,火焰从分裂处中部腾空而起,将火炬、火焰、火红的煤和火星洒向天空。

金星的质量⑥、大小和密度跟地球基本上是相同的。由于它是靠地球最近的行星,所以几个世纪以来人们把它看成是地球的姐妹。我们的姐妹究竟是什么样子的呢?也许它是一个温和的夏日行星,因为靠太阳稍近一点,所以会比较暖和?它有撞击环形山吗?或者都已经被侵蚀掉了?有火山吗?有山脉。海洋和生命吗?

1609年,林利略首先通过望远镜来观察金星,他看到了一个非常平凡的圆面。伽利略注意到,金星跟月球一样,有不同的位相——从娥眉形到圆盘形,由于同样的原因,我们有时候主要是看到金星的夜晚的一面,有时候主要是看到它的白昼的一面。这一发现偶然地进一步证实了“地球绕太阳转而不是太阳绕地球转”的观点是正确的。随着倍数的增大和清晰度(即对细枝末节的分辨率)的提高,光学望远镜就被系统地用来观测金星。但是它们的效果并不比伽利略的望远镜好多少,金星的外围显然包着一层很浓厚的迷雾,当我们在早晨或夜晚观看这个行星的时候,我们看到的是金星外围的云雾所反射的太阳光。虽然我们发现这些云雾已经几个世纪了,我们对它们的成分还是一无所知。

因为看不到金星上的任何东西,一些科学家就得出了这样奇怪的结论:金星的表面是沼泽地,像石炭纪的地球。这个论点——如果我们可以大言不惭地这么说的话——是这样推导出来的:

“我看不到金星上的任何东西。”

“为什么看不到?”

“因为它的四周云雾弥漫。”

“云雾的成分是什么?”

“水,那还用说。”

“那么,为什么金星的云层比地球的云层厚呢?”

“因为那里的水比较多。”

“但是,如果云里的水分比较多的话,星球表面的水

分也必定比较多。什么样的表面很湿呢?”

“沼泽。

如果金星上有沼泽的话,为什么不能有蜻蜓甚至恐龙呢?观察:见不到金星上有什么东西。结论:它一定是一个生机勃勃的地方。金星的毫无特色的云雾反映了我们自己的偏爱。我们自己是生物,所以我们想象别的地方也有生物。但是只有对证据进行耐心的积累和认真的估价之后我们才能断定某一个特定的星球是否有生物。看样子,金星并不赏识我们对它的偏爱。

我们是通过棱镜首先获得认识金星性质的真正线索,这种棱镜是用玻璃制成的,或者是用一种叫做衍射光栅的扁平面制成的(上面布满了细密而规则的直纹)。当一束强烈的普通白光穿过一个狭缝之后,再穿过一个棱镜或光栅的时候,这束白光散成五颜六色的彩带,我们把它叫做光谱。这种光谱从高频可见光到低频可见光依次排列,即紫、蓝、绿、黄、橙、红。因为我们可以看见这些颜色,所以这个光谱叫做可见光谱。但是光并不仅仅是可见光谱上的那么一小部分。在这种光谱高频区域紫光以外的那部分光线叫紫外线。这是一种地地道道的光,能够杀死微生物。我们看不见这种光,但是用大黄蜂或光电管立即就能够测出来。还有许许多多的光是我们看不到的,在这个光谱的紫外线以外是X射线部分,X射线以外是伽马射线。在这种光谱低频区域红光的另一边是红外线。我们把测量微电流用的温差电偶安培计放置在黑暗的红外区时发现了这种光。经这种光照射,温度上升了,有光照射在安培计上,但我们的肉眼看不到这种光。通过响尾蛇和掺杂半导体能很明显地测出红外辐射光。红外线以外是广阔的无线电波光谱区。从伽马射线到无线电波,所有的光都是不可低估的,它们在天文学上都是有用的。但是,由于我们肉眼观察的局限性,我们对称为可见光谱的这一小段五颜六色的彩带持有一种偏见和偏心。

1844年,哲学家奥古斯特·孔德曾寻找一种永不可知的知识的例子。他挑选了遥远的恒星和行星的成分作为例子。因为他认为,我们永远不可能实地访问它们。在手头没有标本的情况下,我们似乎永远不可能了解它们的成分。但是孔德死后才3年,人们就发现一种可以用来测定遥远物体的化学成分的光谱。不同的分子和化学元素吸收不同频率(即不同颜色)的光——有时候是可见光谱上的光,有时候则是在光谱之外的部分。在行星大气的光谱上,一条黑线表示一个没有光线的狭缝,表示太阳光在穿过另一个星球的大气层时被吸收了。每一条这样的黑线都是由某种特定的分子或原子形成的,每一种物质都有其典型的光谱特征。我们从地球上可以验明6000万公里以外的金星上的气体,我们可以推测太阳的成分(氦——根据希腊太阳神赫利俄斯的名字而命名的——最先是在太阳里发现的),推测富铕的A磁星的成分(通过对1000亿个小星的集合光的分析),推测遥远星系的成分。天文光谱学简直是一种魔术般的技术,它现在仍然使我惊愕不已。奥古斯特·孔德真是挑选了一个非常不恰当的例子。

电磁光谱图解:从波长最短的γ射线到波长最长的无线电波。光的波长单位有:埃(A)、微米(μm)、厘米(cm)和米(m)。

假如金星是湿淋淋的,那么,我们一定会很容易地在它的光谱上看到水蒸气的谱线。但是,大约在1920年,威尔逊山天文台在首次进行的光谱学探索中并没有发现金星的云层上方有任何水蒸气的迹象,这说明金星的表面像沙漠一样干涸,在它上面漂浮着一层层的硅酸盐粉末。后来的研究发现,金星的大气层里含有大量的二氧化碳。有些科学家认为,这种现象说明,这个行星上的所有水分已经跟碳氢化合物结合,所以才形成了二氧化碳。因此,金星的表面是一个全球性的大油田,是一个全球性的石油的海洋。另一些科学家认为,在云层上方之所以没有水蒸气,是因为云层的气温很低,所有的水分都凝结成了液滴,而这些液滴的谱线跟水蒸气的谱线是不同的。因此,他们得出结论:这个星球的表面覆盖着水,也许偶然间会有一个像英国多佛峭壁那样镶满石灰石的岛屿。但是,因为在大气层里有大量的二氧化碳,海里不可能是普通的水,物理化学中要求碳化水。他们认为,金星上有一个大海洋,海里含有大量游离碳酸的塞耳特斯矿水。

关于金星的真实情况的最初迹象,我们不是通过对光谱可见光部分或近红外部分的研究获得的,而是通过对无线电光谱区的研究获得的。射电望远镜的工作原理与其说像照像机,不如说像光度计。当你把它指向天空中某个广阔的区域时,它会记录下多少能量以某种特殊的无线电频率传送到地球上。我们对各种智能生命——例如那些主持无线电台和电视台的人员——所传送的无线电信号比较习惯。但是由于种种原因,许多自然界的物体也会发射出无线电波,原因之一是它们有热量。1956年,当人们将一台早期的射电望远镜转向金星的时候,人们发现它似乎是一个温度极高的星球,它不断地发射出无线电波。但是真正证实金星的表面处于惊人的高温状态,是在苏联的“金星”系列宇宙飞船首次穿越朦胧的云层,并在这个最近行星的神秘而又难于捉摸的表面着陆的时候。我们现在知道,金星是一个炙热的星球,在那里没有沼泽,没有油田,也没有含大量游离碳酸的塞耳特斯矿水的海洋。在资料不足的情况下,我们很容易出差错。

当我跟一个朋友打招呼的时候,我是通过可见光(例如太阳光或白炽灯光)的反射看到她的,光线从我的朋友的身上反射到我的眼睛里。但是古人(包括欧几里得这样的人物)相信,我们之所以看见东西,是因为我们的眼睛发射出某种光线,这种光线使我们直接感触到我们要看的东西。这是一种很自然的想法,而且现在还会有人这样想,尽管我们不能用这种观点来解释暗室里看不见物体的原因。今天,我们将激光和光电管结合起来,或将雷达发射机和射电望远镜结合起来,这样,我们就可以让光跟遥远的物体直接接触。根据射电天文学原理,无线电波从地球上的望远镜发射出去,撞击在碰巧面向地球的金星半球,然后再反射回来。许多不同波长的无线电波能够穿透金星上的云层和大气层。金星表面的某些地方会吸收这些电波,或者,如果它的表面很不平坦的话,它们会把这些电波散射开来,结果呈现出一片黑暗。通过观测金星自转时表面特征的变化,我们现在已经能够准确地测定金星一天的长度——金星在它的轴上自转一周所需的时间。事实证明,金星自转一周需要243地球日,但它是逆转的,与内太阳系所有其他行星的旋转方向相反。结果,太阳从西边升起,从东边落下,从日出到日落需要118地球日。而且,当它最接近我们这个行星时,朝向地球的一面几乎是不变的。虽然地球的吸力终于使金星以这种地球锁定的速度自转,但这毕竟是一个漫长的过程。金星不可能才存在几千年,可以肯定地说,它跟内太阳系所有其他天体的年龄相当。

我们已经获得了关于金星的雷达照片,其中有些是通过地面的射电望远镜拍摄的,有些是通过环绕金星的飞船“金星先驱者”号拍摄的。这些照片向我们提供了关于撞击环形山的令人感兴趣的证据。金星跟月球上的高地一样,有同样数目的不大不小的环形山,数目之多再次向我们说明,金星已经有很长的历史了。但是金星上的环形山特别浅,似乎金星的表面高温使那里的岩石长期处于流动状态,它们像太妃糖或油灰一样,突起部分逐渐软化掉。这里有比西藏高原高一倍的大山,有一个极大的长峡谷,可能还有巨大的火山和一座像珠穆朗玛峰那样的高山。我们现在清楚地看到了一个过去被云雾笼罩着的星球,首次通过射电和宇宙飞船探索了它的特征。

根据射电天文学原理的推断和宇宙飞船直接测量的结果,我们知道金星的表面温度大约是480摄氏度(即900华氏度),比温度最高的家用烘箱的温度还要高。其相应的表面压力是90个大气压,等于我们在地球上所感受到的大气压的90倍。如果想在金星上长久停留的话,宇宙飞船不但要造得像深水潜水艇那么牢固,还要冷冻起来。

大约有10来艘苏制和美制的宇宙飞船已经进入浓厚的金星大气层,并且已经穿越过它的云层。其中有几艘实际上已经在它的表面上逗留过1小时左右⑦。苏联“金星”系列宇宙飞船已经有2艘在那里拍摄过照片。让我们继承这些先驱使命,访问另一个世界吧!

在普普通通的可见光里,金星上的淡黄色的云层是可以辨认得出来的,但是正如伽利略首先指出的那样,这些云层实际上并没有显示出任何特征。然而,如果摄影机是在紫外光里拍摄的话,我们就会看到在大气层高处有一个优美而又复杂的旋涡状天气系统,那里的风速每秒100米左右(每小时220英里左右)。金星的大气层里含有96%的二氧化碳,还有微量的氮、水蒸气、氩、一氧化碳和其他气体,但是那里的碳氢化合物或碳水化合物的含量还不到百万分之零点一。已经查明,金星的云层的主要成分是硫酸的浓缩溶液,此外还有少量的盐酸和氢氟酸。事实证明,金星是一个令人作呕的地方,即使在凉快的高层也是如此。

在可见的最高云层上方,大约在70公里的高度上,是一片朦胧的微粒。在60公里的高度上,当我们钻人云层的时候,我们发现我们的四周都是浓硫酸液滴。越是往深处走,云粒就越粗。在大气的底层有微量的刺鼻的二氧化硫(SO2)气体。这种气体环流到云层的上方,被太阳的紫外光分解之后跟那里的水重新组合,形成硫酸,硫酸又凝结成液滴沉降下来在底层又受热分解成地和水,从而完成了一个循环。在整个金星的上空不停地下着硫酸雨,但是从来没有一滴硫酸降落在金星的表面上。

硫黄色的薄雾一直延伸到离金星的表面约45公里的地方,从那里开始,我们就进人了一个浓密但又是清澈的大气层。然而,因为大气层的气压很高,所以我们看不到金星的表面。太阳光被大气的分子反射到四面八方,使我们无法看见金星表面的任何东西。这里没有尘埃。没有云层,只有越来越浓密的大气。上方的云层将大量的阳光(大约相当于我们在地球上阴天时所看到的那样多的阳光)传送到这里。

金星上高温、高压,还有毒气,那里的一切都散发着可怕的红光。金星一点也不像爱情女神,倒更像地狱的化身。

根据我们详细观察,金星表面至少有一些地方是乱七八糟的旷野,到处布满了无规则的软化了的岩石,呈现一幅狰狞。荒凉的面貌,偶尔可以看到来自一个遥远行星的宇宙飞船的残骸,整个行星完全遮蔽于浓密的毒雾中。⑧

金星的灾难是全球性的。现在已经相当清楚,金星表面的高温是由一个巨大的温室造成的。金星上的大气和云层对可见光具有半穿透性,太阳是通过它们之后到达金星表面的,表面受热之后,又极力将热量反射到空中。但是、因为金星的温度比太阳的温度低得多,所以金星辐射出来的主要是红外线,而不是光谱上的可见光。然而,因为金星大气里的二氧化碳和水蒸气⑨对红外线几乎是不透明的,所以太阳的热量差不多都被捕获下来,表面的温度也就升高了,直到从浓密的大气层里渗透出来的少量的红外线,跟大气底层和金星表面所吸收的太阳光刚好平衡为止。

事实证明,我们邻近的这个星球是一个令人不快的凄凉的所在。但是我们还是要回到金星上去,它有它迷人的地方。在古希腊和斯堪的纳维亚神话里的许多半神式的英雄毕竟都为朝拜地狱而进行过卓越的努力。关于我们的行星(跟地狱比较起来已经是天堂了),我们还有许多东西需要探索。